Cyclitols. Part XXXIV. ${ }^{1}$ X-Ray Crystal and Molecular Structure of 1,2:5,6-Di-O-isopropylidene-3,4-di-O-tosyl-L-chiro-inositol, and its Conformation in Solution by Nuclear Magnetic Resonance

By J. F. McConnell [Part (A)], S. J. Angyal,* and J. D. Stevens [Part (B)], Schools of Physics and Chemistry, University of New South Wales, Kensington, New South Wales 2033, Australia

Abstract

The crystal structure of the title compound was determined from X-ray diffractometer data by direct methods and refined by least-squares techniques to $R 0.047$ for 1317 observed reflections. Crystals are tetragonal, space group $P 4_{1} 2_{1} 2, a=9.304 \pm 0.005, c=32.008 \pm 0.017 \AA, Z=4$. The cyclohexane ring was found to be in a flattened skew conformation, with four substituents in axial orientation. By contrast. n.m.r. spectroscopy indicates that in solution the title compound adopts predominantly a distorted chair conformation. The conformations of sixmembered rings fused to five-membered rings are discussed.

The stable conformation of six-membered saturated rings is the chair form. However, when a five-membered ring is fused to such a ring, it cannot retain its undistorted chair form; it must be either distorted or changed into another conformation. Particularly important examples of such arrangement are the cyclic acetals formed from cis-1,2-dihydroxy-derivatives of cyclohexane; in this case the five-membered ring is a 1,3 -dioxolan. At a time when accurate data on conformations were not yet available it was believed that five-membered rings were flat, and that therefore fusion of a five-membered to a six-membered ring would require a torsion angle of 0° at the bridgehead. ${ }^{2}$ Consequently the six-membered ring was believed to be forced into a boat or half-chair conformation.
When n.m.r. data became available it was found that the torsion angle at the bridgehead of such compounds was much larger than 0°. Coupling constants of $c a$. 5 Hz were observed ${ }^{3-8}$ between the two hydrogen atoms located at the bridgehead and these were interpreted by the use of the Karplus equation ${ }^{9}$ as indicating torsion angles of $35-45^{\circ}$. The 1,3 -dioxolan ring is highly flexible and its shape depends on the nature and location of its substituents. ${ }^{10}$ When the dioxolan ring is not fused to another ring, vicinal cis-coupling constants between $\mathrm{H}-4$ and $\mathrm{H}-5$ range from $5 \cdot 4$ to 7.5 Hz , corresponding to torsion angles of $30-45^{\circ}$. Such an angle can be accommodated between two cis oxygen atoms on adjacent carbon atoms of a six-membered ring in a chair form, with some distortion.
Analysis of n.m.r. spectra proved that the sixmembered ring is in a distorted, somewhat flattened, chair form in the following compounds: bis(ethylsulphonyl) (4-O-acetyl-2,3-O-isopropylidene- α-D-lyxo-

[^0]pyranosyl)methane, ${ }^{11}$ alkyl 1,2-orthoesters of α-D-glucopyranose, ${ }^{3}$ several 1,2- O-alkylidene-3,4,6-tri- O-acetyl- α -D-glucopyranoses, ${ }^{4,5}$ methyl 2,3-O-isopropylidene- α-Lrhamnopyranoside, ${ }^{6}$ and $1,2: 4,5$-di- O-isopropylidene-β-d-fructopyranose. Initially the n.m.r. spectra of $1,2-O$-alkylidene- α-D-glucopyranose derivatives were interpreted ${ }^{8}$ as being in accord with a skew conformation for these compounds. However, an X-ray crystallographic analysis ${ }^{12}$ of 1,2-O-(2-amino-1-methylethyl-idene)- α-D-glucopyranose hydriodide showed the pyranose ring to be in a distorted, flattened chair form, and it was suggested that the n.m.r. data are not incompatible with such a conformation.

The torsion angle at the bridgehead was shown by the X-ray analysis ${ }^{12}$ to be only 12°, much less than indicated by the n.m.r. spectra. The conformation of the pyranose ring in the crystal is therefore much closer to the half-chair than to the chair form.
When there are two five-membered rings cis-fused to a six-membered ring, the conformation is different: the distortions required by the two attached rings appear to be sufficient to change the chair into a skew form. It was suggested, ${ }^{13}$ from a study of the intramolecular hydrogen bonds in solutions of di-O-isopropylideneinositols, that these compounds are predominantly in skew forms. Whereas the chair form provides only one torsional angle $\left(54 \cdot 4^{\circ}\right)$, the ideal skew form consists ${ }^{14}$ of carbon atoms with a sequence of torsion angles as follows: $-30 \cdot 1,-30 \cdot 1,62 \cdot 8,-30 \cdot 1,-30 \cdot 1$, and $62 \cdot 8^{\circ}$. At the smaller angles two fused five-membered rings can be accommodated without distortion. It was predicted ${ }^{15}$ that 1,2:3,4-diacetals of pyranoses would also be found in skew conformations; subsequently

[^1]n.m.r. measurements on $1,2: 3,4$-di- O-isopropylidene-β-L-arabinopyranose, ${ }^{16} \quad 1,2: 3,4$-di- O-isopropylidene- α-Dgalactopyranose, ${ }^{16} \quad 2,3: 4,5$-di- O-isopropylidene- β-D-fructopyranose,* 17 and $1,2: 5,6$-di- O-isopropylidene- 3,4 -di-thio-L-neo-inositol ${ }^{18}$ were interpreted in terms of skew conformations.
Cone and Hough have noted ${ }^{16}$ that in these diacetals the coupling constants between bridgehead hydrogen atoms are larger than the usual values for fused 1,3 -dioxolan rings. For example, $J_{3.4}$ in the arabinose and galactose derivatives is $c a .8 \mathrm{~Hz}$, indicating that the bridgehead hydrogen atoms must have smaller torsion angles than in other fused 1,3 -dioxolan rings previously studied by n.m.r. sprctroscopy.
Since the coupling constants give only approximate values for the torsion angles we wished to obtain accurate data on a diacetal which is likely to be in a skew form. $\quad 1,2: 5,6$-Di- O-isopropylidene-3,4-di- O-tosyl-L-chiro-inositol ${ }^{19}$ was chosen and was submitted to X-ray crystallographic analysis. A fully O-substituted derivative was chosen in order to avoid the possibility of the conformation being controlled by hydrogen bonds.

Part (A). X-Ray Crystallographic Analysis

Clear, well-formed dipyramidal prismatic crystals, m.p $146-147{ }^{\circ} \mathrm{C}$, were obtained by slow evaporation of an ethyl alcohol solution. Unit-cell parameters were obtained from diffractometer measurements.

Crystal Data. $-\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{10} \mathrm{~S}_{2}, M=568.377$. Tetragonal, $a=9.304 \pm 0.005, c=32.008 \pm 0.017 \AA, U=2770 \AA^{3}$, $D_{\mathrm{m}}=1.40$ (by flotation), $Z=4, D_{\mathrm{c}}=1.35$. Space group $P 4_{1} 2_{1} 2$ or $P 4_{3} 2_{1} 2$ from systematic absences, the former chosen arbitrarily. $\quad \mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA$; $\mu\left(\mathrm{Cu}-K_{\alpha}\right)=22.7 \mathrm{~cm}^{-1}$.

Data were collected for a spherical crystal of radius 0.019 $\pm 0.001 \mathrm{~cm}$ on a Siemens automatic single-crystal diffractometer by use of the 'five-value' 20 method. 1617 Independent reflections were measured, and corrected for absorption, Lorentz factor, and polarization. Of these, 300 were unobserved. Reflections 440, 441, 442, 443 were inadvertently omitted during the collection process, but examination of Weissenberg films showed them to to be all of low intensity.

Since $Z=4$, with eight equivalent general positions, it was obvious that the molecule must possess a two-fold axis of symmetry which in the crystal coincides with the diad axes of the type [$1 \overline{1} 0]$. This means that 19 nonhydrogen atoms and 16 hydrogen atoms had to be located.

The Fourier synthesis program used in this investigation employed only tests for parity, so the space-group $P 4_{1} 2_{1} 2$ was degraded to $P 2_{1} 2_{1} 2_{1}$, with an origin shift to ($\frac{1}{4}, 0, \frac{3}{8}$). In effect, this degrades a four-fold axis to a diad

[^2]axis, so that orthorhombic data had to be used in the Fourier synthesis, i.e. $k h l$ data as well as $h k l$ data were included. Similarly, structure factors suitable for an orthorhombic Fourier input were obtained by using eight symmetry positions, corresponding to the new origin: $x, y, z ; \frac{1}{2}-x, \bar{y}, \frac{1}{2}+z ; \bar{x}, \frac{1}{2}+y, \frac{1}{2}-z ; \frac{1}{2}+x, \frac{1}{2}-y, \bar{z} ;$ $\frac{3}{4}+y, \frac{3}{4}+x, \frac{1}{4}-z ; \frac{3}{4}-y, \frac{3}{4}-x, \frac{3}{4}-z ; \frac{1}{4}-y$, $\frac{3}{4}+x$, $\frac{1}{4}+z$; and $\frac{1}{4}+y, \frac{1}{4}-x, \frac{3}{4}+z$.
For the least-squares refinement, tetragonal data were used.
Solution of the Structure.-The structure was solved by direct methods by use of local programs. ${ }^{21}$ For convenience in calculating E-maps, the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$ was used. However as the structure is truly tetragonal, only two reflections were necessary to specify the origin. The specification of the phase of any reflection h, k, l implied the phase of k, h, l which was calculated and included in the starting set. Reflections with $E \geq 1.25$ were used, involving 589 reflections, equivalent to 316 independent reflections on the tetragonal set.
$\Sigma 1$ Relationships ${ }^{22}$ gave probable phases for 10 (orthorhombic) reflections, and symbolic addition ${ }^{23}$ suggested an additional 54 phases. A tangent refinement based on these starting phases accepted 586 out of the 589 phases, with $\sigma 20^{\circ}$. 97 Of these with variance <0.2 were excluded from the input to the E-map Fourier series. From the resulting E-map, most non-hydrogen atoms were readily identified, and the remainder obtained from a differenceFourier synthesis.

Refinement.-Refinement was carried out by use of the least-squares program ORFLS, ${ }^{24}$ using weights inversely proportional to the standard deviation, which was determined from counting statistics. With isotropic thermal parameters, refinement terminated at ca. $R 0.13$ with several strong reflections showing marked evidence of extinction. Anisotropic temperature parameters produced only a small improvement ($R 0 \cdot 105$) due to the noninclusion of hydrogen atoms. These were located from a difference-Fourier synthesis, based on atomic parameters from a high-angle ($\sin \theta>0.3$) refinement cycle.

The hydrogen atoms of the aromatic methyl group occupy unequivocal positions. Of three other tosylates studied recently two ${ }^{25,26}$ have shown a bistable configuration in regard to the terminal methyl hydrogens, with each set occupied with equal probability. These findings were confirmed by neutron diffraction analyses. The third tosylate ${ }^{27}$ showed unequivocal positions (confirmed by neutron diffraction analysis) for the hydrogen atoms as in this present case.

Six reflections badly affected by extinction (marked by S in the structure factor tables) were removed from the refinement which then continued smoothly to $R 0.047$. Atomic positional and thermal parameters together with their estimated standard deviations are shown in Table 1.

[^3]Table 1
Atomic (fractional co-ordinates) and anisotropic thermal parameters * ($\times 10^{5}$) with standard deviations in parentheses

	x	y	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
S	0-25703(28)	0.68478(24)	$0 \cdot 48717(7)$	1757(39)	1357(33)	153(3)	$-5(30)$	42(9)	133(8)
$\mathrm{O}(1)$	$0 \cdot 25473(65)$	$0.51532(50)$	0.48216(14)	1630(90)	1197(74)	138(6)	-217(77)	-117(22)	109(18)
$\mathrm{O}(2)$	0.23844(74)	$0 \cdot 72069$ (58)	$0 \cdot 53001(16)$	2603(114)	1661(96)	158(7)	118(106)	232(25)	$35(22)$
$\mathrm{O}(3)$	$0 \cdot 15619(62)$	$0 \cdot 73184(70)$	$0 \cdot 45663(19)$	1684(91)	2078(117)	235(9)	102(90)	-81(26)	$350(30)$
$\mathrm{O}(4)$	$0 \cdot 28612(62)$	$0 \cdot 31560(54)$	$0 \cdot 57807(13)$	2513(120)	1216(76)	89(5)	-513(83)	-53(20)	32(17)
$\mathrm{O}(5)$	$0 \cdot 23750(68)$	$0 \cdot 10222(49)$	$0 \cdot 54824(14)$	2229(106)	1109(73)	92(5)	-278(83)	-41(23)	28(17)
C(1)	0.42998(84)	$0 \cdot 73579(89)$	$0 \cdot 47128(22)$	1479(124)	1116(117)	110(8)	-37(111)	22(27)	$83(29)$
$\mathrm{C}(2)$	$0 \cdot 50710(106)$	$0 \cdot 82840(96)$	$0 \cdot 49576(27)$	1834(162)	1233(124)	140(10)	10(119)	$11(36)$	-23(34)
$\mathrm{C}(3)$	$0 \cdot 63696(111)$	$0 \cdot 87544(100)$	$0 \cdot 48116(31)$	1870(181)	1405(146)	172 (14)	-126(112)	-133(40)	10(37)
$\mathrm{C}(4)$	$0 \cdot 69209(108)$	$0 \cdot 83521(112)$	$0 \cdot 44333(32)$	1698(162)	1623(159)	165(13)	$-36(134)$	-40(39)	$153(38)$
C(5)	$0 \cdot 83484(151)$	$0 \cdot 88968(176)$	$0 \cdot 42882(44)$	1577(198)	3671(357)	290(25)	197(204)	66(59)	452(72)
$\mathrm{C}(6)$	0.61277(130)	$0 \cdot 74051(134)$	$0 \cdot 41943(29)$	2611(204)	2163(196)	$132(11)$	-134(179)	175(44)	$73(46)$
$\mathrm{C}(7)$	$0 \cdot 48006(118)$	$0 \cdot 69148(108)$	$0 \cdot 43301(26)$	2508(202)	1937(179)	117(10)	-699(149)	33(37)	-45(35)
C (8)	$0 \cdot 33167(86)$	$0 \cdot 42817(79)$	0.51316(21)	1630(135)	1161(113)	101(9)	-277(104)	-114(28)	$85(26)$
$\mathrm{C}(9)$	0.21903(97)	$0 \cdot 35081$ (82)	$0.53962(21)$	1642(159)	1116(117)	93(8)	-226(96)	-7(30)	18(24)
$\mathrm{C}(10)$	$0 \cdot 16772$ (92)	0.20381(92)	$0 \cdot 52245(22)$	1494(122)	1389(121)	93(8)	-392(108)	$5(28)$	$11(26)$
$\mathrm{C}(11)$	$0 \cdot 25418(117)$	$0 \cdot 16870(90)$	$0.58770(22)$	2299(164)	1220(121)	100(8)	-408(131)	-2(37)	68(27)
$\mathrm{C}(12)$	$0 \cdot 11916(136)$	$0 \cdot 15913(131)$	$0 \cdot 61378(30)$	2891 (235)	2217(210)	113(11)	-750(177)	88(43)	$60(43)$
$\mathrm{C}(13)$	$0 \cdot 38466(167)$	0.10556(132)	$0 \cdot 60839(45)$	3634(288)	1554(187)	163(15)	44(210)	-288(56)	$58(44)$
$\mathrm{H}(1)$	$0 \cdot 4580(97)$	0.8569(85)	$0 \cdot 5240$ (21)	1852	1219	141	-1	6	-22
$\mathrm{H}(2)$	0.7089(93)	$0.9361(86)$	$0 \cdot 4951$ (26)	1855	1387	177	-137	- 138	20
$\mathrm{H}(3)$	$0 \cdot 6356(111)$	0.7074(107)	$0 \cdot 3957(24)$	2547	2081	136	-152	172	80
$\mathrm{H}(4)$	$0 \cdot 4266(98)$	$0 \cdot 6157(95)$	$0 \cdot 4178(22)$	2522	1926	115	-667	33	-47
$\mathrm{H}(5)$	$0 \cdot 3854(82)$	$0 \cdot 4962(78)$	$0 \cdot 5333(19)$	1625	1177	100	-283	-116	90
$\mathrm{H}(6)$	$0 \cdot 1303(88)$	$0 \cdot 4235(82)$	$0 \cdot 5432(20)$	1677	1118	92	-248	-2	20
$\mathrm{H}(7)$	$0 \cdot 0670(88)$	$0 \cdot 1881(93)$	$0 \cdot 5266(20)$	1485	1362	92	-411	6	9
$\mathrm{H}(8)$	$0 \cdot 4025(144)$	$0 \cdot 0258(153)$	$0 \cdot 5950(28)$	2937	1762	179	-212	-233	160
$\mathrm{H}(9)$	$0 \cdot 3715(147)$	0.0266(156)	$0 \cdot 6177(36)$	2937	1762	179	-212	-233	160
$\mathrm{H}(10)$	$0 \cdot 4165(124)$	0.1523(111)	$0 \cdot 6331(29)$	2937	1762	179	-212	-233	160
$\mathrm{H}(11)$	$0 \cdot 1296(104)$	$0 \cdot 2034(108)$	$0 \cdot 6403(25)$	2871	2201	117	-778	92	77
$\mathrm{H}(12)$	0.0359(106)	$0 \cdot 1995(111)$	$0 \cdot 5974(24)$	2871	2201	117	-778	92	77
$\mathrm{H}(13)$	$0.0923(103)$	$0 \cdot 0495(113)$	$0 \cdot 6168(24)$	2871	2201	117	-778	92	77
$\mathrm{H}(14)$	$0 \cdot 8248(127)$	$0.9396(135)$	$0 \cdot 4078(35)$	1569	3166	282	-174	97	382
$\mathrm{H}(15)$	$0 \cdot 8798(128)$	0.8126(134)	$0.4135(37)$	1569	3166	282	-174	97	382
$\mathrm{H}(16)$	$0.9065(106)$	0.8704(131)	$0 \cdot 4487(34)$	1569	3166	282	-174	97	382
* As coefficients in the expression $T_{i}=\exp \left[-\left(B_{11} h^{2}+B_{22} k^{2}+B_{33}{ }^{2}+2 B_{13} h k+2 B_{13} h l+2 B_{23} k l\right)\right]$. Hydrogen thermal parameters were not refined.									

Observed and calculated structure factors ($10 \times$ absolute) are listed in Supplementary Publication No. SUP 20450 (5 pp., 1 microfiche).* Hydrogen thermal parameters were not refined, but were given the same values as the carbon atom to which they are attached, taken finally from a cycle when R was ca. $0 \cdot 05$.
Bond distances and angles between all non-hydrogen atoms are shown in Figure 1. The mean $\mathrm{C}-\mathrm{H}$ distances were $0.97 \AA$, with a maximum deviation of $0.18 \AA$ which is $<2 \sigma$.
Figure 2 is a stereographic pair of diagrams (produced by ORTEP ${ }^{28}$) which show clearly the conformation of the cyclohexane and dioxolan rings. The ellipsoids represent the root-mean-square value of atomic displacement due to thermal motion.
Figure 3 shows the packing arrangement of the molecules in the unit cell.

DISCUSSION OF THE STRUCTURE

The structure of $1,2: 5,6$-di- O-isopropylidene-3,4-di- O -tosyl-L-chiro-inositol shows some unusual features. The cyclohexane ring is, as expected, in a skew form but this skew form is considerably flattened. The sequence of torsion angles is $-14.5,-27.5,49.6,-27.5,-14.5$, and $36 \cdot 1^{\circ}$ instead of the ideal ${ }^{14}-30 \cdot 1,-30 \cdot 1,62 \cdot 8$, $-30 \cdot 1,-30 \cdot 1$, and $62 \cdot 8^{\circ}$, showing flattening in that part of the ring which is fused to the dioxolan rings. The flattening results in bond angles within the cyclohexane ring which are all larger than tetrahedral.

It is hard to see why this flattening should occur when the $30 \cdot 1^{\circ}$ angle of the ideal skew form would provide the apparently usual angle for the fusion of the rings. In other words, the angle strain in the molecule is greater than appears necessary.
Moreover, the cyclohexane ring is not in the ${ }^{3} S_{1}$ skew form (1) postulated ${ }^{13}$ for the untosylated parent

(1)

(2)
compound, 1,2:5,6-di-O-isopropylidene-L-chiro-inositol, in solution. This conformation has no axial substituents, whereas in the ${ }^{1} S_{3}$ conformation (2) found in the crystal

[^4]structure four oxygen atoms, $\mathrm{O}(1), \mathrm{O}(3), \mathrm{O}(4)$, and $\mathrm{O}(6)$ are in axial positions. The two oxygen atoms carrying

Figure 1 Schematic diagram of the molecule showing bond lengths (\AA) and bond angles (${ }^{\circ}$). The dashed line represents a diad axis
the tosyl groups, with a torsion angle of $174 \cdot 6^{\circ}$ between them, are very close to true axial positions; the other

Figure 2 Stereographic pair of views (6° apart) of the molecule.
formation of the molecule, since axial substituents in a skew form destabilize a molecule even more than those in a chair form. ${ }^{14}$

The dioxolan rings take up twist conformations: the acetal carbon atom is above, and $\mathrm{O}(1)$ below, the plane formed by the other three atoms of the ring. The torsion angle at the bridgehead, -12°, is surprisingly small; however, the high coupling constants found in similar compounds ${ }^{7,16}$ suggest that this may be a common occurrence in six-membered rings in the skew conformation. An even lower torsion angle at the bridgehead has recently been found. ${ }^{29}$

Part (B). Conformation in Solution

Having found an unusual and unexpected conformation in the crystals of $1,2: 5,6$-di- O-isopropylidene- 3,4 -di- O-tosyl-L-chiro-inositol we thought it of interest to determine the conformation of this compound in solution by the use of n.m.r. spectroscopy.* Unfortunately the six ring protons give signals close to each other, forming, because of the presence of a two-fold axis of symmetry, an $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{CC}^{\prime}$ pattern, difficult to analyse.

Initially, therefore, two closely similar compounds were investigated: the $3-O$-acetyl-4-O-tosyl ${ }^{19}$ and the 3,4 -di- O acetyl ${ }^{30}$ derivatives of $1,2: 5,6$-di-O-isopropylidene-L-chiroinositol. In the former, two one-proton pairs of doublets at $\delta 5.11$ and 4.70 p.p.m. were assigned to $\mathrm{H}-3$ and $\mathrm{H}-4$, respectively, on the basis of the well-known deshielding by an acetoxy-group. First-order analysis of this portion of the spectrum gave $J_{2.3} 8 \cdot 2, J_{3,4} 11 \cdot 1$, and $J_{4,5} 7 \cdot 9 \mathrm{~Hz}$.

The diacetyl derivative has a spectrum (Figure 4) approximating to the $\mathrm{AA}^{\prime} \mathrm{KK}^{\prime} \mathrm{XX}^{\prime}$ type. In $\left[{ }^{[} \mathrm{H}_{6}\right]$ acetone solution H-3 and H-4 gave rise to an almost symmetrical (with respect to intensities) six-line multiplet at $\delta \quad 5 \cdot 02$ p.p.m. and H-1 and H-6 gave a six-line multiplet at $\delta 4.53$ p.p.m. (on five-fold expansion the two inner lines appear as shoulders on the strongest peaks). Both these multiplets were analysed as the AA^{\prime} portion of an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$

The ellipsoids represent relative thermal vibration amplitudes
two, with a torsion angle of $162 \cdot 1^{\circ}$ between them, are slightly displaced outwards from the true axial positions. One would not expect this to be the most stable con-

[^5]system ${ }^{31}$ (in which $J_{x x^{\prime}}$ is zero, thereby simplifying the usual ten-line pattern to six lines).

The values obtained by this analysis (Table 2) were checked by use of the LAOCOON-3 iterative n.m.r. spec-
${ }^{30}$ S. J. Angyal and C. G. Macdonald, J. Chem. Soc., 1952, 686.
${ }^{31}$ J. A. Pople, W. G. Schneider, and H. J. Bernstein, Canad. J. Chem., 1957, 35, 1060.
trum analysis program, ${ }^{32}$ treating these multiplets as the AA^{\prime} portion of an $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system and allowing all the coupling constants to vary, excepting $J_{\mathrm{BB}}{ }^{\prime}$ which was held at zero. The agreement between the two sets of coupling constants obtained was excellent. A spectrum of the diacetate in $\left[{ }^{2} \mathrm{H}\right]$ chloroform was not so readily analysed because the two central peaks of the multiplet due to $\mathrm{H}-1$ and $\mathrm{H}-6$ were not resolved from the two high intensity
to that of the diacetate except that the multiplets are closer together. Analysis ${ }^{31}$ of this spectrum was carried out in the same manner as for the diacetate. This analysis was then followed by LAOCOON-3 iterative analysis for the H-2, H-3, H-4, and H-5 portion of the spectrum, which gave coupling constants involving these protons which were only insignificantly different from those obtained by the first analysis. The values of $J_{2,3}, J_{3.4}$, and $J_{4.5}$ (Table 2)

Table 2
N.m.r. data * of derivatives of $1,2: 5,6$-di-O-isopropylidene-L-chiro-inositol

Derivative	Solvent	$J_{1,2}, J_{5,8}$	$J_{2,3}$	$J_{\text {g. }}$	$J_{4,5}$	$J_{1,6}$	$J_{2,4}, J_{3,5}$	$J_{1,5}, J_{2,6}$	H-1,H-6	H-2,H-5	H-3	H-4
3-O-Acetyl-4-O-tosyl	CDCl_{3}		8.2	11.1	7.9				4.52	$4 \cdot 27$	$5 \cdot 11$	$4 \cdot 70$
3,4-Di-O-acetyl	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$	6.16	8.35	11.5	8.35	$2 \cdot 35$	-0.15	-0.6	4.53	$4 \cdot 32$		
	CDCl_{3}	5.75	8.35	11.2	8.35	1.5	-0.15	-0.75	$4 \cdot 53$	$4 \cdot 30$		
3,4-Di-O-tosyl	CDCl_{3}	6.75	$5 \cdot 9$	8.8	$5 \cdot 9$	1.8	$0 \cdot 4$	-0.95	$4 \cdot 45$	$4 \cdot 23$		

peaks, resulting in an increase in the uncertainty associated with the determination of $J_{1,6}$. The coupling constants determined from this spectrum are included in Table 2,

Figure 3 Arrangement of the molecules in the unit cell

Figure 4 Part of the n.m.r. spectrum (100 MHz) of 3,4-di-O-acetyl-1,2:5,6-di- O-isopropylidene-L-chiro-inositol in $\left[{ }^{2} \mathrm{H}_{6}\right]$ acetone
and it can be seen that the change of solvent has caused small changes in some of these values.

The n.m.r. spectrum of the ditosyl derivative is similar
32 S. Castellano and A. A. Bothner-By, J. Chem. Phys., 1964, 41, 3863.
${ }^{33} \mathrm{~S}$. J. Angyal, G. C. Irving, D. Rutherford, and M. E. Tate, J. Chem. Soc., 1965, 6662.
were found to differ considerably from those of the diacetyl and the acetyl tosyl derivatives. The conformation is therefore insensitive to a change of one, but not of both, acetyl groups to tosyl groups. The smaller coupling constants of the ditosyl derivative may have two explanations: significant contribution of another conformation or flattening of the chair form. If the other contributing conformation is the other chair or the ${ }^{3} S_{1}$ skew form, $\mathrm{H}-1$ and H-6 would be axial in some of the molecules and $J_{1.6}$ would become larger. In fact, it is the same as in the diacetate. The smaller values of $J_{2,3}, J_{3,4}$, and $J_{4,5}$ therefore indicate flattening of the ring, caused, presumably, by interaction of the two bulky tosyl grpups.

The spectrum of 3,4 -di-O-acetyl-1,2:5,6-di-O-cyclohexyl-idene-L-chiro-inositol (prepared by acetylation of the diacetal ${ }^{33}$) was also recorded and was found to be practically indistinguishable in the $\delta 4-6 \mathrm{p} . \mathrm{p} . \mathrm{m}$. region from that of the di-isopropylidene derivative. A variation of the substituents on the dioxolan ring therefore does not change the conformation of the cyclohexane ring.

DISCUSSION

The n.m.r. spectra show that the conformation of 1,2:5,6-di- O-isopropylidene-3,4-di- O-tosyl-L-chiro-inositol (and related compounds) in solution is neither the ${ }^{3} S_{1}$ skew form (1) expected from previous results, ${ }^{13}$ nor the ${ }^{1} S_{3}$ skew form (2) found in the crystalline state, but a distorted chair form (3). The usual values of coupling constants in inositols are 2.75 Hz for coupling between an axial and an equatorial hydrogen atom, and 9.5 Hz for coupling between two axial hydrogen atoms. ${ }^{34}$ The latter value, which corresponds to a dihedral angle of less than 180°, is in accord with the somewhat flattened nature of the cyclohexane ring in inositols. ${ }^{35}$ The values (Table 2) of $J_{1.2}(5 \cdot 75-6.75 \mathrm{~Hz}$) and $J_{2.3}(5.9-8.35 \mathrm{~Hz})$ indicate to what extent the ring has been partially flattened in the di-isopropylidene derivatives to accommodate the dioxolan rings. The large values $(11.1-11.5 \mathrm{~Hz})$ for $J_{3.4}$ of the diacetyl and acetyl tosyl derivatives show puckering in that part of the ring, as a reflex effect of the flattening elsewhere,
${ }^{34}$ S. J. Angyal and G. J. H. Melrose, J. Chem. Soc., 1965, 6494.
${ }^{35}$ G. A. Jeffrey and H. S. Kim, Carbohydrate Res., 1970, 15, 310.
which increases the dihedral angle between $\mathrm{H}-3$ and $\mathrm{H}-4$ to about 180°; in the ditosyl derivative some flattening, rather than puckering, occurs at C-3 and C-4.
After surveying the previously described cases, Angyal ${ }^{36}$ suggested that fusion of one five-membered

(4)

(5)

to a six-membered ring left it in the chair conformation but that fusion of two five-membered rings changed it into a skew conformation. The case here reported is the first exception to this generalization. In the previously reported cases the two neighbouring oxygen atoms of the two dioxolan rings are both axial in the skew form; this arrangement may be a particularly stable one. In the present case the chair form has this arrangement and therefore appears to be more stable.

Another exception to the generalization has recently been found: crystal structure analysis of methyl 2,6 -dichloro-2,6-dideoxy-3,4- O-isopropylidene- α-D-altropyranoside (4) found the six-membered pyranose ring in a skew form, ${ }^{37}$ although it is fused only to one dioxolan ring. The torsion angle at the bridgehead is very small $\left(14.5^{\circ}\right)$; this seems to be characteristic of a dioxolan ring fused to a six-membered ring in a skew conformation. Both chair forms of α-D-altropyranose have substantial unfavourable steric interactions ${ }^{38}$ and inversion into a skew form should therefore be com-

[^6]paratively easy: in this conformation every substituent is equatorial or pseudo-equatorial. ${ }^{37}$

The conformations of two other inositol acetals are briefly reported here. In $\left[{ }^{2} \mathrm{H}\right]$ chloroform solution the n.m.r. spectrum of $1,4,5,6$-tetra- O-acetyl-2,3- O -cyclohexylidene-myo-inositol ${ }^{39}$ (5) clearly shows every ring proton and allows first-order analysis. Signals for two protons appear at higher field, well separated from the others; these must be the protons at the bridgehead but it is not obvious which is that of $\mathrm{H}-2$ and which of H-3. Dr. Laurens Anderson (Wisconsin) provided us with a sample of myo-inositol partially deuteriated on C-2; this was converted into the tetraacetyl $2,3-O$-cyclohexylidene derivative and its n.m.r. spectrum showed that the signal at $\delta 4.52$ p.p.m. was now small; it is that of H-2. By matching the splittings, the spectrum was unravelled: $\delta 5 \cdot 51$ (H-6), $5 \cdot 28$ (H-4), $5 \cdot 19(\mathrm{H}-1), 5 \cdot 02(\mathrm{H}-5), 4 \cdot 52(\mathrm{H}-2)$, and 4.22 p.p.m. (H-3), all pairs of doublets; $J_{1.2} 3 \cdot 6, J_{2.3} 5 \cdot 4, J_{3.4} 6 \cdot 5$, $J_{4.5} 8 \cdot 9, J_{5.6} 8 \cdot 1$, and $J_{6.1} 9.7 \mathrm{~Hz}$. The cyclohexane ring is therefore in a chair form, somewhat flattened at C-2 and C-3.

1,4 -Di- O-acetyl-2,3:5,6-di- O-cyclohexylidene-myo-inositol ${ }^{39}$ (6) also gives a well-resolved n.m.r. spectrum in $\left[{ }^{2} \mathrm{H}\right]$ chloroform. ${ }^{40}$ Two proton signals at low field must be those of $\mathrm{H}-1$ and $\mathrm{H}-4$, and a triplet with small splittings is recognized as that of $\mathrm{H}-2$, the only hydrogen atom with two cis hydrogen neighbours. Matching the splittings gave the interpretation of the spectrum: $\delta 5 \cdot 26(\mathrm{H}-4), 5 \cdot 08(\mathrm{H}-1), 4 \cdot 60(\mathrm{t}, \mathrm{H}-2), 4 \cdot 14(\mathrm{H}-6), 4 \cdot 13$ (H-3), and 3.47 p.p.m. (H-5), all but H-2 pairs of doublets; $J_{1,2} 4 \cdot 4, J_{2.3} 5 \cdot 0, J_{3.4} 6 \cdot 7, J_{4.5} 11 \cdot 2, J_{5.6} 9 \cdot 5, J_{6.1}$ 10.5 Hz . This molecule is also in a flattened chair form. It is to be noted that one of the dioxolan rings is transfused at C-5/C-6; the skew conformation would therefore not be advantageous.

The work described here should serve as a warning: one should not assume that the conformation found in the crystal lattice is also the predominant, or even a significant, conformation in solution. In the present case, the conformation in the crystal lattice seems to be governed by the arrangement of the benzene rings, rather than by the intrinsic stability of the cyclohexane conformations.
[2/444 Received, 28th February, 1972]

[^7]
[^0]: ${ }^{1}$ Part XXXIII, S. J. Angyal and R. J. Hickman, Carbohydrate Res., 1971, 20, 97.
 ${ }^{2}$ H. G. Derx, Rec. Trav. chim., 1922, 41, 318; W. Hückel and H. Friedrich, Annalen, 1926, 451, 132.
 ${ }_{3}$ R. U. Lemieux and A. R. Morgan, Canad. J. Chem., 1965, 48, 2199.
 ${ }_{4}$ R. G. Rees, A. R. Tatchell, and R. D. Wells, J. Chem. Soc. (C), 1967, 1768.
 ${ }_{5}$ R. U. Lemieux and D. H. Detert, Canad. J. Chem., 1968, 46, 1039 .
 ${ }_{6}$ S. J. Angyal, V. A. Pickles, and R. Ahluwalia, Carbohydrate Res., 1967, 3, 300.
 ${ }^{7}$ T. Maeda, K. Tori, S. Satoh, and K. Tokoyama, Bull. Chem. Soc. Japan, 1969, 42, 2635.

[^1]: B. Coxon and L. D. Hall, Tetrahedron, 1964, 20, 1685.
 ${ }^{9}$ M. Karplus, J. Chem. Phys., 1959, 11, 30.
 10 W. E. Willy, G. Binsch, and E. L. Eliel, J. Amer. Chem. Soc., 1970, 92, 5394.
 ${ }^{11}$ L. D. Hall, L. Hough, K. A. McLauchlan, and K. G. R. Pachler, Chem. and Ind., 1962, 1465.
 12 J. Trotter and J. K. Fawcett, Acta Cryst., 1966, 21, 366.
 ${ }_{13}$ S. J. Angyal and R. M. Hoskinson, J. Chem. Soc., 1962, 2991.

 14 J. B. Hendrickson, J. Amer. Chem. Soc., 1967, 89, 7036.
 15 E. L. Eliel, N. L. Allinger, S. J. Angyal, and G. A. Morrison, ' Conformational Analysis,' Interscience, New York, 1965, p. 361 .

[^2]: * Glazkov et al. ${ }^{17}$ recorded the same coupling constants for this compound but concluded, erroneously, that it was in the $1 C$ conformation.
 ${ }^{16}$ C. Cone and L. Hough, Carbohydrate Res., 1965, $1,1$.
 17 V. I. Glazkov, E. M. Malakhaev, and B. N. Stepanenko, Doklady Akad. Nauk S.S.S.R., 1968, 182, 1322.
 ${ }^{18}$ G. E. McCasland, S. Furuta, A. Furst, L. F. Johnson, and J. N. Shoolery, J. Org. Chem., 1963, 28, 456.
 ${ }_{19}$ S. J. Angyal and N. K. Matheson, J. Amer. Chem. Soc., 1955, ry\%, 4343.
 ${ }^{20}$ W. Woppe, Angew Chem., 1965, y7, 484.

[^3]: 21 C. T. Grainger, unpublished data.
 ${ }^{22}$ H. Hauptman and J. Karle, Amer. Chem. Association Monograph No. 3, 1953.
 ${ }^{23}$ J. Karle and I. L. Karle, Acta Cryst., 1966, 21, 849.
 24 W. R. Busing, K. O. Martin, and A. A. Levy, ORNL-TM305, 1962.
 ${ }_{25}{ }^{55}$ V. J. James and J. F. McConnell, Tetrahedron, 1971, 27, 5475.
 ${ }_{26}{ }^{5475}$ P. L. Johnson, C. J. Cheer, J. P. Schaeffer, V. J. James, and F. H. Moore, Tetrahedron, 1972, 28, 2893.
 ${ }^{27}$ P. L. Johnson J. P. Schaeffer, V. J. James, and J. F. McConnell, Tetrahedron, 1972, 28, 2901.

[^4]: * For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . are sent as full size copies).
 ${ }^{28}$ C. K. Johnson, USAEC Report, ORNL-3794, 1965.

[^5]: * N.m.r. spectra were measured with a JNM-4H-100 spectrometer at 100 MHz .
 ${ }^{29}$ E. Pallister, N. C. Stephenson, and J. D. Stevens, Chem. Comm., 1972, 98.

[^6]: ${ }^{36}$ S. J. Angyal in W. Pigman and D. Horton, 'Carbo-hydrates-Chemistry and Biochemistry,' Academic Press, New York, 2nd edn., 1972, vol. 1A, p. 211.
 ${ }_{37}$ G. H.-Y Lin and M. Sundaralingam, Carbohydrate Res., in the press.

[^7]: ${ }^{38}$ S. J. Angyal, Austral. J. Chem., 1968, 21, 2737.
 ${ }^{39}$ S. J. Angyal, M. E. Tate, and S. D. Gero, J. Chem. Soc., 1961, 4116.
 ${ }^{40}$ A. F. Russell, Ph.D. Thesis, The University of New South Wales, 1967.

